Iterative Reweighted Minimization for Generalized Norm/Quasi-Norm Difference Regularized Unconstrained Nonlinear Programming
نویسندگان
چکیده
منابع مشابه
Iterative Reweighted Minimization Methods for $l_p$ Regularized Unconstrained Nonlinear Programming
In this paper we study general lp regularized unconstrained minimization problems. In particular, we derive lower bounds for nonzero entries of the firstand second-order stationary points and hence also of local minimizers of the lp minimization problems. We extend some existing iterative reweighted l1 (IRL1) and l2 (IRL2) minimization methods to solve these problems and propose new variants fo...
متن کاملSchatten-p Quasi-Norm Regularized Matrix Optimization via Iterative Reweighted Singular Value Minimization∗
In this paper we study general Schatten-p quasi-norm (SPQN) regularized matrix minimization problems. In particular, we first introduce a class of first-order stationary points for them, and show that the first-order stationary points introduced in [11] for an SPQN regularized vector minimization problem are equivalent to those of an SPQN regularized matrix minimization reformulation. We also s...
متن کاملIterative Reweighted Algorithms for Matrix Rank Minimization Iterative Reweighted Algorithms for Matrix Rank Minimization
The problem of minimizing the rank of a matrix subject to affine constraints has many applications in machine learning, and is known to be NP-hard. One of the tractable relaxations proposed for this problem is nuclear norm (or trace norm) minimization of the matrix, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Re...
متن کاملIterative Reweighted Singular Value Minimization
In this paper we study general lp regularized unconstrained matrix minimization problems. In particular, we first introduce a class of first-order stationary points for them. And we show that the first-order stationary points introduced in [11] for an lp regularized vector minimization problem are equivalent to those of an lp regularized matrix minimization reformulation. We also establish that...
متن کاملIterative reweighted algorithms for matrix rank minimization
The problem of minimizing the rank of a matrix subject to affine constraints has applications in several areas including machine learning, and is known to be NP-hard. A tractable relaxation for this problem is nuclear norm (or trace norm) minimization, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Reweighted Least...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2948426